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Abstract. In this paper, we evaluate the possibility of detecting continuous
changes in the user’s cognitive workload using functional near-infrared spec-
troscopy (fFNIRS). We dissect the source of meaning in a large collection of n-
backs and argue that the problem of controlling the content of a participant’s
mind poses a major problem for calibrating an algorithm using black box ma-
chine learning. We therefore suggest that the field simplify its task, and begin to
focus on building algorithms that work on specialized subjects, before adapting
these to a wider audience.
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1 Introduction

User interfaces typically deduce their user's intentions by measuring their physical
gestures, within a tiny and agreed-upon space of device-dependent commands. Since
the user produces each such input consciously, the mapping between physical gesture
and digital effect should be transparent and immediate. Ongoing HCI research at-
tempts to improve this bandwidth: to provide more information to the computer with-
out posing an additional cognitive tax on the user. For example, whereas a conven-
tional user interface (UI) is designed for a single prototypical user, a better Ul recog-
nizes differences among users, and can adapt its design appropriately.

But critical dimensions of the user vary from moment to moment. Humans, who like
computers can be described with the metaphor of a continuously changing infor-
mation processor, support multiple editions of themselves. Optimally, a user interface
would characterize the user at each point in time. The goal of an Implicit Interface is
to deduce the user’s mood, intention, preference, and more general cognitive state
from non-intentionally transmitted information. It then capitalizes on this information
for the purpose of improved user experience in real time.

The design of an implicit or physiological interface can be divided into three parts:



e The Measurement Component dissects the user’s cognitive processes into useful
abstractions that can be inferred from behavioral or physiological data

e The Data Mining Component translates unorganized user data into accurate state
predictions

e The Design Component crafts interfaces that adapt based on these predictions

Work in implicit interfaces generally covers all three parts. This paper is motivated by
the problem of building and calibrating a brain-computer interface based on function-
al near-infrared spectroscopy (fNIRS). We combine knowledge from cognitive and
neuroscience with observations from single trial analysis to arrive at a set of recom-
mendations. We first analyze a concrete implementation of an implicit interface using
fNIRS, focusing on the possible improvements to the data mining components. The
paper makes the following contributions:

o First, we reanalyze the data collected from a previous experiment [1] using ma-
chine learning.

e Second, to gauge the portability of this algorithm in a real-time cognitive workload
prediction context, we examine the character of individual fNIRS trials.

e Third, we suggest a possible alternative method for inducing mental states involv-
ing controlled self-report and adaptively filtered fNIRS data

e Finally, we consider how thinking about psychological states in terms of task-
positive and resting-networks may provide a more useful framework for interpret-
ing fNIRS data.

2 Dynamic Difficulty Adjustment

2.1  Design Component

In [1], we identified a design problem. With j Unmanned Aerial Vehicles (UAVs) and
k human monitors of these UAVs, what is the optimal distribution of the j UAVs
among the k human monitors? The naive solution is to distribute workload equitably
among the monitors (each one receiving j/k UAVs). However, each monitor has dif-
ferent cognitive endowment. In addition, their cognitive energy and capacity might
fluctuate unpredictably over the course of an hour or a day. Equal distribution thus
appears to be sub-optimal. The UAV-monitor designer therefore poses a question to
psychology: what cognitive abstractions can be characterized to elicit optimal user
performance?

2.2 Cognitive Workload.

We chose the cognitive workload or working memory state as cognitive abstraction.
Working memory has fixed capacity and supports separate and somewhat parallelized
buffers for different formats of data (spatial, verbal, episodic) [4]. It can be induced
by the n-back task. In a visuospatial 1-back, the subject identifies whether or not a
square on a grid matches what was seen in a previous iteration; in a visuospatial 2-
back, the subject responds whether or not it matches the arrangement two iterations



ago. Engagement of working memory activates the dorsolateral prefrontal cortex
(dIPFC) [17]. It is a prime candidate for detection via EEG [9] as well as through
peripheral physiological correlates such as changes pupillary response (Igbal, 2004)
and heart rate variability [14]. A useful physiological sensor for HCI has a likely en-
try-point into consumer grade electronics as well as a very specific physiological trace
that is unlikely to be tricked by a user in motion in an unpredictable real world set-
ting. For this reason, we focus on functional Near Infrared Spectroscopy (fNIRS).

2.3 Functional Near Infrared Spectroscopy

Given its relatively exterior neurobiological housing in the dIPFC, cognitive workload
invites convenient detection using non-invasive light-based neuroimaging. fNIRS is a
neuroimaging technique especially well-suited as a supplementary input device in a
Brain-Computer Interface [11,12,1,2,15,16]. A light source beams near infrared light
that penetrates skin and bone; it is differentially absorbed by oxygenated and deoxy-
genated hemoglobin in the neural bloodstream, so that a measurement of the photons
returning to a nearby sensor can indicate the relative proportion of either quantity.
Since inter-neuronal communication (the basic computational process of any mental
activity) demands a continuous stream of oxygen, measurements of oxygen provides a
rough barometer of the activity of the probed region. The depth of effective probing is
limited (the distance between light source and detector approximates the maximum
depth), but, especially compared to EEG, fNIRS provides spatially well-resolved
information, meaning the signal fluctuates mostly in response to changes in biology of
the underlying region. It requires little calibration; light sources and detectors need
only to be placed flush on bare skin adjacent to the cranium; and the basic compo-
nents of fNIRS can likely be miniaturized and integrated cheaply and seamlessly into
consumer grade electronics such as head-mounted wearable computers in the future
[8]. In fact, several labs are in the process of building and refining such a low-cost
fNIRS [6].

2.4  Data Mining Component.

Seeking to adaptively control task difficulty in a UAV-operation setting, we thus
sought to continuously portray a user’s cognitive workload using fNIRS. We used
machine learning to translate successions of fNIRS data into discrete classifications of
the user’s state. We calibrated the machine learning algorithm on easy and hard ver-
sions of the n-back task. Specifically, subjects completed the easy 1-back task for 25
seconds, rested for 15 seconds, before completing the harder 3-back task. When com-
plete, basic statistical features (mean and slope) were computed from the time series.
These features, along with the associated class (1-back vs 3-back), were then fed into
a support vector machine (SVM). Trained, the SVM could then theoretically estimate
the probability that unseen 30-second time-series of fNIRS data pertained to a user
experiencing either high workload or low cognitive workload.



2.5 Results

In the adaptive condition, the number of UAVS under the user’s jurisdiction changed
based on fNIRS-detected workload, and this significantly reduced the amount of user
error compared to a non-adaptive condition with equivalent overall work.

3 Limitations with Machine Learning

Machine learning, which was also used previously [1,2,11,12], has several advantages
for detecting cognitive state. It leverages optimized function fitting methods, allowing
it to find patterns which might elude a human observer utilizing classical statistical
techniques. It has a built-in system for confirming that a state can be reliably induced
and measured in a subject by cross-fold validation. It generalizes nicely for calibrating
new algorithms: one need only replace the calibration task and corresponding labels.
It assumes, rightly, that subjects have different brains and that probe placements differ
slightly from one experiment to another. Finally, it doesn’t require the designer of the
algorithm to possess advanced neuroscientific expertise as the burden of discovering
neural correlates of state is left to automated pattern discovery.

But it also has several disadvantages. The state of cognitive workload induced by the
benchmark task may not match the state of cognitive workload in the ordinary course
of the experiment. It might be that that the n-back induces only a very specific cogni-
tive workload state with a neural profile that does not reflect the more general state
which the system endeavors to measure. Similarly, the n-back may not enlist pro-
cessing in the dorsolateral regions under measurement for a particular subject, in
which case the more general state of workload may be detectable even though calibra-
tion task failed to enlist it. Most problematically, the real time user experience is not
organized into neat serial trials with preceding baselines periods and clear starting
points. A machine learning algorithm is calibrated on 30-second time segments only
to be required to make predictions of a real task in continuous time. In the best case,
where a user would transition from a baseline resting state into a thirty second experi-
ence of high cognitive workload, the time series would only align with the trials of the
calibration period at that one point: 30 seconds after rest. In theory, every other pre-
diction is doomed because of fundamental misalignment with the structure assumed
during calibration.

The lack of reasonable ground truth for a state outside of the format of a well-
controlled induction task makes it impossible to evaluate how well a machine learning
based algorithm is actually performing. All that is known is that, in some percentage
of experiments, some percentage of dependent variables are significantly superior in
an adaptive condition that hinges on accurate real-time prediction.



4 Machine Learning Reanalysis

The approach of only examining average data and delegating large portions of the
problem to black box machine learning may work, but it stymies progress towards a
better algorithm, and needs to be supplemented with a calculated break down into
exquisitely well-controlled individual trials. In this paper, we try to dissect the fNIRS
workload signal. We begin by looking at the average case, before breaking the prob-
lem down to individual subjects, and ultimately individual trials.

In an exploratory re-analysis of the 27 subjects in [1], leave-one-trial-out analysis of
each subject resulted in an average case performance of 66.6%. In other words, when
a machine learning algorithm was fed all but one of the fifteen 1-back trials and fif-
teen 3-back trials for any given subject, it correctly identified the excluded testing
trial as belonging to either 1-back or 3-back with 66.6% accuracy. Although several
features, filters, and machine learning algorithms were tested, optimal performance
involved Weka’s SMO support vector machine [18] processing the mean, standard
deviation, and slope-of-best-fit on the whole and second half of every channel. This
combination has proven most useful in this and other experiments [15]. Curiously,
optimal performance omitted data preprocessing techniques and filtering, possibly
because respiratory signals such as heart rate variability, captured by the standard
deviation feature, provide information to the calculation of workload. The fact that
offline analysis advises against preprocessing and filtering further substantiates the
problem of building an online algorithm from evaluation in an offline setting.

Classification accuracies ranged from 34.4% to 89.2%, with a standard deviation of
13.9%. Five subjects had classification accuracies above 80% (subjects 27, 25, 10, 8,
12). These subjects warrant further investigation.

In order to dissect the source of meaning in the data and get a better sense of the diffi-
culty of the problem, we have selected the five best subjects (as measured through
machine learning), and applied the following steps of preprocessing to their data.
First, we have applied the Modified Beer Lambert Law to extract Hb and HbO. For
simplification, we then merged values from neighboring sources on the forehead into
single channels, before z-scoring the data, and applying a moving average algorithm,
which sets each value to be the average of 16 readings (the device samples at 11.9 hz)
as well as a low pass filter at a cutoff of 0.5hz. Finally, we have anchored each trial at
0, setting each point in the 25 second trial to reflect the difference between it and the
starting point

In figure 1, we have added all trials into a common dataset and then merged these into
one graph, where the dotted line reflects the average value and the thickness of the
area chart reflects one standard deviation. Selecting among four possible graphs: ei-
ther left or right prefrontal cortex and either Hb or HbO, we selected the most visually
distinguishable graph. This graph agrees with the average case reported in the litera-
ture; that higher workload tends to signify an increase in oxygenation, especially in
the left PFC [10]. It also shows how the change in oxygenation happens slowly, be-
ginning some time after the trial begins.



Relative oxygenation change

Fig. 1. Average left prefrontal cortex HbO activation for five subjects

In figure 2, we have applied the same selection procedure but for each individual
subject. We show each individual trial to get a sense of the underlying variation. We
note that for four out of five subjects the most visually distinguishable was on the left
prefrontal cortex.

Subject 12. Right PFC HbO

Subject 8. Left PFC Hb

Subject 25. Left PFC HbO

Subject 10. Left PFC Hb

Subject 27. Left PFC HbO

Fig. 2. Changes in Hb for five subjects



Each subject exhibits a visually apparent pattern with individual exceptions to that
pattern. The key to designing an accurate algorithm is to figure out why certain trials
break the trend. There are two plausible reasons:

e A spontaneous and unrelated respiratory trend might be overwhelming a consistent
neurological response.

e The user might have lost focus or otherwise solved the problem under a different
cognitive profile, thereby generating a different neurological response.

5 Towards a Better Algorithm

5.1  Adaptive Filtering

To mitigate the effect of spontaneous respiratory signals interfering with the true neu-
rological response, it is possible to apply adaptive filtering (Zhang, 2009; Aqil, 2012).
An adaptive filter requires there to be one source-detector pair which measures oxy-
genation changes in only the skin; this occurs if the source is less than a centimeter
away from the detector. With one signal measuring both brain and skin response and
one signal only measuring skin response, a channel including nothing but brain re-
sponse can be obtained by subtracting the frequencies the two have in common. The
adaptive filter also fulfills the purposes of the bandpass filters of eliminating the heart
rate and respiratory components. It may also eliminate spontaneous low frequency
oscillations that can drown out an otherwise consistent neurological response.

5.2 Controlling for Spontaneous Mental Activity

With the software tools and hardware in place to extract the exclusively neurological
component of the signal, the next challenge is to find a way to assess whether or not
the user is maintaining a consistent cognitive profile across trials. This requirement
demands a degree of meta-awareness that would be rare in the average participant.
We therefore combined our research that aims to build an algorithm that works mod-
erately on many people with a parallel investigation of an algorithm that works ex-
tremely well on one person. It would be informative to study just one mentally disci-
plined subject who generated reasonably consistent fNIRS-detected neurological re-
sponses and could assist explain the character of their own mental activity. It is possi-
ble that none of the results effectively generalize to others. But the more likely scenar-
i0 is that this format invites rapid iteration for testing of new algorithms, and can
quickly suggest what is and what is not possible.

To prototype the possibility of this approach, one of the authors of this paper (SH)
regularly examined his own fNIRS activity. The following section is therefore written
in the first person to show the advantages of having the same person as interpreter and
supplier of the data.



5.3 4-Back

In this experiment, | completed a total of fourteen 30 second aural 4-backs (in orange)
and aural 0-backs (in blue), interspersed with 10 second resting periods. (In an aural
n-back, participants repeat the number heard n iterations ago). The data (which have
been adaptively filtered and anchored to start at zero) are shown in figure 3. To solve
a 4-back, | subvocally rehearse a 4-item mental buffer. When | hear a new number, |
say the first number of the string recently rehearsed, then immediately repeat the
string but with the last string’s second element in the first position, and the new ele-
ment in the last position. As long as | keep escalating n, it is virtually impossible to
solve the problem without granting the task the exclusive province of my attention.
During a 0-back, | do not exert the same level of control over the activity of my mind.
I complete the task, but occasionally my conscious mind is occupied by other
thoughts or feelings.

adhboadaptive %

0.00004

0.00003 4

0.00002

0.00001

0.00000

T T T T T T 1
L] 5 10 15 20 25

Fig. 3. Adaptively filtered change in HbO

What is especially interesting with fNIRS self-analysis is the possibility to dissect the
trials which break an otherwise coherent pattern. The perfect self-analytical experi-
ment is when you have a clear pattern, with exactly one exception. In this experiment,
each condition has one exception. For the easy trials (when | was merely repeating
numbers), one trial has the character of the 4-back trials. And for the 4-back trials,



one trial has the character of the 0-back trials. The 4-back exception is especially
interesting because it was the last trial in the series and | know exactly how it mental-
ly unfolded. It was the last trial and | was getting tired. For the first five seconds, the
trial unfolded like every other 4-back trial. | heard 0, then subvocally said zero. |
heard 3; then subvocally said zero-three. | heard 5; then subvocally said zero-three-
five. But then | heard six, and instead of adding it to a four-item buffer, | said aloud
the first item in my buffer (zero), immediately noticed the mistake and then fumbled
through the remainder trial unable to recover. Coincidentally, five seconds into the
trial (approximately when I heard 5), there is a spike in the oxygenation levels in my
left ventromedial prefrontal cortex.

There are three possible explanations for this. First, it could be entirely coincidental. |
think this would be the wrong interpretation. The data is otherwise consistent, and the
shift in oxygenation is a slope-value greater than anything observed in the dataset up
until that point. Second, it is possible that I made the mistake, noticed the mistake,
and the data reflects my frustration. But a subtle clue in the data dismisses this possi-
ble. The break in activation occurs two seconds before my noticing that | have failed
the trial. That suggests the third possibility is true.

Five seconds into the trial, either a rhythmic biological force or a string of computa-
tional association, cemented computation in one of the nodes antithetical to proper
focus. For 6/7 of the 4-back trials, a combination of task difficulty and mental prepar-
edness enabled me to block out the otherwise near-continuous presence of my default
mode network. For the 7th and last trial, I got ready, doing my best to sustain focus,
but five seconds in, neurological circumstance concentrated computation in a network
of mind that interferes with task-related rumination. This explanation aligns exactly
with the observed data, my private experience of it, as well as the cognitive science
literature.

6 Task Positive vs Default Mode Network

Neuroscience has changed since the advent of BCI [13].Early BCI applications fo-
cused on the distinction high vs low cognitive workload in part because it seemed the
most neurologically rich and inducible state. Since then, neuroscience has grown in-
creasingly interested in studying the brain at rest, discovering an active and energy-
consuming set of regions known as the default mode network (DMN), which together
compute the tendency of the mind to wander and ruminate when given the opportuni-
ty, becoming relatively more silent when the host engages a consuming task. It is an
open question whether fNIRS PFC oxygenation values correlate better with (a) the
current strain of working memory or (b) the enlistment of general mental resources
towards task performance. Note that it is possible to have an engaged working
memory without utilizing this memory in the service of a task and also possible to be
dedicating attention wholeheartedly to a task without utilizing working memory. But
either cognitive abstraction explains the differentiability of an n-back signal from
fNIRS data. Furthermore, the primary sensitivity of the fNIRS to (b) not (a) better fits
the between subject variability of the signal.



With this more general portrayal of cognitive state, the failure to coerce a consistent
cognitive state can easily be explained. In some cases, a 3-back requires the full en-
listment of task-positive attention and the subject is both cognitively able and moti-
vated to grant it. In other cases, because the task is too easy, too hard, or the subject is
generally distracted, the subject is unable to enter a task-positive network. Similarly
for the low workload induction: sometimes these trials are met with relative tranquili-
ty and other times a busily exploring default mode network.

Between participants, fMRI studies have shown that extroverts have a greater change
in the fMRI signal in the dIPFC between three-backs and rest compared to introverts
even though, behaviorally, they perform the same [7]. One explanation for this dis-
crepancy is that introverts, being consistent self-monitors and relatively less capable
to surrender attention to the external environment, fail to dislodge mild concurrent
self-monitoring scripts as they complete n-backs. So while the cognitive processes in
charge of their working memory remain their same, perhaps they fail to fully enter the
task-positive network like the extroverts.

Task-related attention and cognitive workload overlap, but knowing them invites a
different set of design considerations. The basic goal of any user interface is to facili-
tate task performance. Good user interfaces therefore mitigate distractibility and nar-
row their user’s attention. Knowing the direction of the user’s attention, internal or
external, provides the basic measure governing the current effectiveness of a user
interface: a broader and more useful piece of information than knowing the weight of
their cognitive workload.

7 Conclusion

We suggest a return to simplicity in the design fNIRS-based cognitive state predic-
tors. First, we recommend steering away from machine learning until the meaning of
the data can be understood on a single trial basis. Second, we recommend adaptive
filtering so that channels with exclusive brain activity can be examined. Third, we
recommend perfecting an algorithm on only one or a handful of trained and disci-
plined subjects, before deciding how to train, calibrate, and deploy it on a random
audience. Finally, we encourage future BCI studies, like contemporary neuroscience,
begin to consider the relevance and usefulness of calibrating algorithms mind-
wandering resting states.
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