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Abstract. In this paper, we evaluate the possibility of detecting continuous 

changes in the user’s cognitive workload using functional near-infrared spec-

troscopy (fNIRS). We dissect the source of meaning in a large collection of n-

backs and argue that the problem of controlling the content of a participant’s 

mind poses a major problem for calibrating an algorithm using black box ma-

chine learning. We therefore suggest that the field simplify its task, and begin to 

focus on building algorithms that work on specialized subjects, before adapting 

these to a wider audience. 
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1 Introduction  

User interfaces typically deduce their user's intentions by measuring their physical 

gestures, within a tiny and agreed-upon space of device-dependent commands. Since 

the user produces each such input consciously, the mapping between physical gesture 

and digital effect should be transparent and immediate. Ongoing HCI research at-

tempts to improve this bandwidth: to provide more information to the computer with-

out posing an additional cognitive tax on the user. For example, whereas a conven-

tional user interface (UI) is designed for a single prototypical user, a better UI recog-

nizes differences among users, and can adapt its design appropriately.  

 

But critical dimensions of the user vary from moment to moment.  Humans, who like 

computers can be described with the metaphor of a continuously changing infor-

mation processor, support multiple editions of themselves. Optimally, a user interface 

would characterize the user at each point in time. The goal of an Implicit Interface is 

to deduce the user’s mood, intention, preference, and more general cognitive state 

from non-intentionally transmitted information. It then capitalizes on this information 

for the purpose of improved user experience in real time.  

 

The design of an implicit or physiological interface can be divided into three parts: 



 The Measurement Component dissects the user’s cognitive processes into useful 

abstractions that can be inferred from behavioral or physiological data 

 The Data Mining Component translates unorganized user data into accurate state 

predictions 

 The Design Component crafts interfaces that adapt based on these predictions 

Work in implicit interfaces generally covers all three parts. This paper is motivated by 

the problem of building and calibrating a brain-computer interface based on function-

al near-infrared spectroscopy (fNIRS). We combine knowledge from cognitive and 

neuroscience with observations from single trial analysis to arrive at a set of recom-

mendations. We first analyze a concrete implementation of an implicit interface using 

fNIRS, focusing on the possible improvements to the data mining components. The 

paper makes the following contributions: 

 First, we reanalyze the data collected from a previous experiment [1] using ma-

chine learning.  

 Second, to gauge the portability of this algorithm in a real-time cognitive workload 

prediction context, we examine the character of individual fNIRS trials.  

 Third, we suggest a possible alternative method for inducing mental states involv-

ing controlled self-report and adaptively filtered fNIRS data 

 Finally, we consider how thinking about psychological states in terms of task-

positive and resting-networks may provide a more useful framework for interpret-

ing fNIRS data. 

2 Dynamic Difficulty Adjustment 

2.1 Design Component 

In [1], we identified a design problem. With j Unmanned Aerial Vehicles (UAVs) and 

k human monitors of these UAVs, what is the optimal distribution of the j UAVs 

among the k human monitors? The naive solution is to distribute workload equitably 

among the monitors (each one receiving j/k UAVs). However, each monitor has dif-

ferent cognitive endowment. In addition, their cognitive energy and capacity might 

fluctuate unpredictably over the course of an hour or a day. Equal distribution thus 

appears to be sub-optimal. The UAV-monitor designer therefore poses a question to 

psychology: what cognitive abstractions can be characterized to elicit optimal user 

performance?  

2.2 Cognitive Workload. 

We chose the cognitive workload or working memory state as cognitive abstraction. 

Working memory has fixed capacity and supports separate and somewhat parallelized 

buffers for different formats of data (spatial, verbal, episodic) [4]. It can be induced 

by the n-back task. In a visuospatial 1-back, the subject identifies whether or not a 

square on a grid matches what was seen in a previous iteration; in a visuospatial 2-

back, the subject responds whether or not it matches the arrangement two iterations 



ago.  Engagement of working memory activates the dorsolateral prefrontal cortex 

(dlPFC) [17]. It is a prime candidate for detection via EEG [9] as well as through 

peripheral physiological correlates such as changes pupillary response (Iqbal, 2004) 

and heart rate variability [14]. A useful physiological sensor for HCI has a likely en-

try-point into consumer grade electronics as well as a very specific physiological trace 

that is unlikely to be tricked by a user in motion in an unpredictable real world set-

ting.  For this reason, we focus on functional Near Infrared Spectroscopy (fNIRS). 

2.3 Functional Near Infrared Spectroscopy 

Given its relatively exterior neurobiological housing in the dlPFC, cognitive workload 

invites convenient detection using non-invasive light-based neuroimaging. fNIRS is a 

neuroimaging technique especially well-suited as a supplementary input device in a 

Brain-Computer Interface [11,12,1,2,15,16]. A light source beams near infrared light 

that penetrates skin and bone; it is differentially absorbed by oxygenated and deoxy-

genated hemoglobin in the neural bloodstream, so that a measurement of the photons 

returning to a nearby sensor can indicate the relative proportion of either quantity. 

Since inter-neuronal communication (the basic computational process of any mental 

activity) demands a continuous stream of oxygen, measurements of oxygen provides a 

rough barometer of the activity of the probed region. The depth of effective probing is 

limited (the distance between light source and detector approximates the maximum 

depth), but, especially compared to EEG, fNIRS provides spatially well-resolved 

information, meaning the signal fluctuates mostly in response to changes in biology of 

the underlying region. It requires little calibration; light sources and detectors need 

only to be placed flush on bare skin adjacent to the cranium; and the basic compo-

nents of fNIRS can likely be miniaturized and integrated cheaply and seamlessly into 

consumer grade electronics such as head-mounted wearable computers in the future 

[8]. In fact, several labs are in the process of building and refining such a low-cost 

fNIRS [6].  

2.4 Data Mining Component. 

Seeking to adaptively control task difficulty in a UAV-operation setting, we thus 

sought to continuously portray a user’s cognitive workload using fNIRS. We used 

machine learning to translate successions of fNIRS data into discrete classifications of 

the user’s state. We calibrated the machine learning algorithm on easy and hard ver-

sions of the n-back task. Specifically, subjects completed the easy 1-back task for 25 

seconds, rested for 15 seconds, before completing the harder 3-back task. When com-

plete, basic statistical features (mean and slope) were computed from the time series. 

These features, along with the associated class (1-back vs 3-back), were then fed into 

a support vector machine (SVM). Trained, the SVM could then theoretically estimate 

the probability that unseen 30-second time-series of fNIRS data pertained to a user 

experiencing either high workload or low cognitive workload.  



2.5 Results 

In the adaptive condition, the number of UAVs under the user’s jurisdiction changed 

based on fNIRS-detected workload, and this significantly reduced the amount of user 

error compared to a non-adaptive condition with equivalent overall work. 

3 Limitations with Machine Learning     

Machine learning, which was also used previously [1,2,11,12], has several advantages 

for detecting cognitive state. It leverages optimized function fitting methods, allowing 

it to find patterns which might elude a human observer utilizing classical statistical 

techniques. It has a built-in system for confirming that a state can be reliably induced 

and measured in a subject by cross-fold validation. It generalizes nicely for calibrating 

new algorithms: one need only replace the calibration task and corresponding labels. 

It assumes, rightly, that subjects have different brains and that probe placements differ 

slightly from one experiment to another. Finally, it doesn’t require the designer of the 

algorithm to possess advanced neuroscientific expertise as the burden of discovering 

neural correlates of state is left to automated pattern discovery.  

    

But it also has several disadvantages. The state of cognitive workload induced by the 

benchmark task may not match the state of cognitive workload in the ordinary course 

of the experiment. It might be that that the n-back induces only a very specific cogni-

tive workload state with a neural profile that does not reflect the more general state 

which the system endeavors to measure. Similarly, the n-back may not enlist pro-

cessing in the dorsolateral regions under measurement for a particular subject, in 

which case the more general state of workload may be detectable even though calibra-

tion task failed to enlist it. Most problematically, the real time user experience is not 

organized into neat serial trials with preceding baselines periods and clear starting 

points. A machine learning algorithm is calibrated on 30-second time segments only 

to be required to make predictions of a real task in continuous time. In the best case, 

where a user would transition from a baseline resting state into a thirty second experi-

ence of high cognitive workload, the time series would only align with the trials of the 

calibration period at that one point: 30 seconds after rest. In theory, every other pre-

diction is doomed because of fundamental misalignment with the structure assumed 

during calibration. 

 

The lack of reasonable ground truth for a state outside of the format of a well-

controlled induction task makes it impossible to evaluate how well a machine learning 

based algorithm is actually performing. All that is known is that, in some percentage 

of experiments, some percentage of dependent variables are significantly superior in 

an adaptive condition that hinges on accurate real-time prediction. 

 



4 Machine Learning Reanalysis 

The approach of only examining average data and delegating large portions of the 

problem to black box machine learning may work, but it stymies progress towards a 

better algorithm, and needs to be supplemented with a calculated break down into 

exquisitely well-controlled individual trials. In this paper, we try to dissect the fNIRS 

workload signal. We begin by looking at the average case, before breaking the prob-

lem down to individual subjects, and ultimately individual trials.  

 

In an exploratory re-analysis of the 27 subjects in [1], leave-one-trial-out analysis of 

each subject resulted in an average case performance of 66.6%. In other words, when 

a machine learning algorithm was fed all but one of the fifteen 1-back trials and fif-

teen 3-back trials for any given subject, it correctly identified the excluded testing 

trial as belonging to either 1-back or 3-back with 66.6% accuracy. Although several 

features, filters, and machine learning algorithms were tested, optimal performance 

involved Weka’s SMO support vector machine [18] processing the mean, standard 

deviation, and slope-of-best-fit on the whole and second half of every channel. This 

combination has proven most useful in this and other experiments [15]. Curiously, 

optimal performance omitted data preprocessing techniques and filtering, possibly 

because respiratory signals such as heart rate variability, captured by the standard 

deviation feature, provide information to the calculation of workload. The fact that 

offline analysis advises against preprocessing and filtering further substantiates the 

problem of building an online algorithm from evaluation in an offline setting.  

 

Classification accuracies ranged from 34.4% to 89.2%, with a standard deviation of 

13.9%. Five subjects had classification accuracies above 80% (subjects 27, 25, 10, 8, 

12). These subjects warrant further investigation.  

 

In order to dissect the source of meaning in the data and get a better sense of the diffi-

culty of the problem, we have selected the five best subjects (as measured through 

machine learning), and applied the following steps of preprocessing to their data. 

First, we have applied the Modified Beer Lambert Law to extract Hb and HbO. For 

simplification, we then merged values from neighboring sources on the forehead into 

single channels, before z-scoring the data, and applying a moving average algorithm, 

which sets each value to be the average of 16 readings (the device samples at 11.9 hz) 

as well as a low pass filter at a cutoff of 0.5hz. Finally, we have anchored each trial at 

0, setting each point in the 25 second trial to reflect the difference between it and the 

starting point  

 

In figure 1, we have added all trials into a common dataset and then merged these into 

one graph, where the dotted line reflects the average value and the thickness of the 

area chart reflects one standard deviation. Selecting among four possible graphs: ei-

ther left or right prefrontal cortex and either Hb or HbO, we selected the most visually 

distinguishable graph. This graph agrees with the average case reported in the litera-

ture; that higher workload tends to signify an increase in oxygenation, especially in 

the left PFC [10]. It also shows how the change in oxygenation happens slowly, be-

ginning some time after the trial begins. 



 

Fig. 1. Average left prefrontal cortex HbO activation for five subjects 

 

In figure 2, we have applied the same selection procedure but for each individual 

subject. We show each individual trial to get a sense of the underlying variation. We 

note that for four out of five subjects the most visually distinguishable was on the left 

prefrontal cortex. 

 

 

Fig. 2. Changes in Hb for five subjects 



 

 
Each subject exhibits a visually apparent pattern with individual exceptions to that 

pattern. The key to designing an accurate algorithm is to figure out why certain trials 

break the trend. There are two plausible reasons: 

 A spontaneous and unrelated respiratory trend might be overwhelming a consistent 

neurological response. 

 The user might have lost focus or otherwise solved the problem under a different 

cognitive profile, thereby generating a different neurological response. 

5 Towards a Better Algorithm 

5.1 Adaptive Filtering 

To mitigate the effect of spontaneous respiratory signals interfering with the true neu-

rological response, it is possible to apply adaptive filtering (Zhang, 2009; Aqil, 2012). 

An adaptive filter requires there to be one source-detector pair which measures oxy-

genation changes in only the skin; this occurs if the source is less than a centimeter 

away from the detector. With one signal measuring both brain and skin response and 

one signal only measuring skin response, a channel including nothing but brain re-

sponse can be obtained by subtracting the frequencies the two have in common. The 

adaptive filter also fulfills the purposes of the bandpass filters of eliminating the heart 

rate and respiratory components. It may also eliminate spontaneous low frequency 

oscillations that can drown out an otherwise consistent neurological response.  

5.2 Controlling for Spontaneous Mental Activity 

With the software tools and hardware in place to extract the exclusively neurological 

component of the signal, the next challenge is to find a way to assess whether or not 

the user is maintaining a consistent cognitive profile across trials. This requirement 

demands a degree of meta-awareness that would be rare in the average participant. 

We therefore combined our research that aims to build an algorithm that works mod-

erately on many people with a parallel investigation of an algorithm that works ex-

tremely well on one person. It would be informative to study just one mentally disci-

plined subject who generated reasonably consistent fNIRS-detected neurological re-

sponses and could assist explain the character of their own mental activity. It is possi-

ble that none of the results effectively generalize to others. But the more likely scenar-

io is that this format invites rapid iteration for testing of new algorithms, and can 

quickly suggest what is and what is not possible. 

 

To prototype the possibility of this approach, one of the authors of this paper (SH) 

regularly examined his own fNIRS activity. The following section is therefore written 

in the first person to show the advantages of having the same person as interpreter and 

supplier of the data.  



5.3 4-Back 

In this experiment, I completed a total of fourteen 30 second aural 4-backs (in orange) 

and aural 0-backs (in blue), interspersed with 10 second resting periods. (In an aural 

n-back, participants repeat the number heard n iterations ago). The data (which have 

been adaptively filtered and anchored to start at zero) are shown in figure 3. To solve 

a 4-back, I subvocally rehearse a 4-item mental buffer. When I hear a new number, I 

say the first number of the string recently rehearsed, then immediately repeat the 

string but with the last string’s second element in the first position, and the new ele-

ment in the last position. As long as I keep escalating n, it is virtually impossible to 

solve the problem without granting the task the exclusive province of my attention. 

During a 0-back, I do not exert the same level of control over the activity of my mind. 

I complete the task, but occasionally my conscious mind is occupied by other 

thoughts or feelings. 

 

 

 

Fig. 3.  Adaptively filtered change in HbO 

 

What is especially interesting with fNIRS self-analysis is the possibility to dissect the 

trials which break an otherwise coherent pattern. The perfect self-analytical experi-

ment is when you have a clear pattern, with exactly one exception. In this experiment, 

each condition has one exception. For the easy trials (when I was merely repeating 

numbers), one trial has the character of the 4-back trials. And for the 4-back trials, 



one trial has the character of the 0-back trials. The 4-back exception is especially 

interesting because it was the last trial in the series and I know exactly how it mental-

ly unfolded. It was the last trial and I was getting tired. For the first five seconds, the 

trial unfolded like every other 4-back trial. I heard 0, then subvocally said zero. I 

heard 3; then subvocally said zero-three. I heard 5; then subvocally said zero-three-

five. But then I heard six, and instead of adding it to a four-item buffer, I said aloud 

the first item in my buffer (zero), immediately noticed the mistake and then fumbled 

through the remainder trial unable to recover. Coincidentally, five seconds into the 

trial (approximately when I heard 5), there is a spike in the oxygenation levels in my 

left ventromedial prefrontal cortex. 

 

There are three possible explanations for this. First, it could be entirely coincidental. I 

think this would be the wrong interpretation. The data is otherwise consistent, and the 

shift in oxygenation is a slope-value greater than anything observed in the dataset up 

until that point. Second, it is possible that I made the mistake, noticed the mistake, 

and the data reflects my frustration. But a subtle clue in the data dismisses this possi-

ble. The break in activation occurs two seconds before my noticing that I have failed 

the trial. That suggests the third possibility is true.  

 

Five seconds into the trial, either a rhythmic biological force or a string of computa-

tional association, cemented computation in one of the nodes antithetical to proper 

focus. For 6/7 of the 4-back trials, a combination of task difficulty and mental prepar-

edness enabled me to block out the otherwise near-continuous presence of my default 

mode network. For the 7th and last trial, I got ready, doing my best to sustain focus, 

but five seconds in, neurological circumstance concentrated computation in a network 

of mind that interferes with task-related rumination. This explanation aligns exactly 

with the observed data, my private experience of it, as well as the cognitive science 

literature. 

6 Task Positive vs Default Mode Network 

Neuroscience has changed since the advent of BCI [13].Early BCI applications fo-

cused on the distinction high vs low cognitive workload in part because it seemed the 

most neurologically rich and inducible state. Since then, neuroscience has grown in-

creasingly interested in studying the brain at rest, discovering an active and energy-

consuming set of regions known as the default mode network (DMN), which together 

compute the tendency of the mind to wander and ruminate when given the opportuni-

ty, becoming relatively more silent when the host engages a consuming task. It is an 

open question whether fNIRS PFC oxygenation values correlate better with (a) the 

current strain of working memory or (b) the enlistment of general mental resources 

towards task performance. Note that it is possible to have an engaged working 

memory without utilizing this memory in the service of a task and also possible to be 

dedicating attention wholeheartedly to a task without utilizing working memory. But 

either cognitive abstraction explains the differentiability of an n-back signal from 

fNIRS data. Furthermore, the primary sensitivity of the fNIRS to (b) not (a) better fits 

the between subject variability of the signal. 



 

With this more general portrayal of cognitive state, the failure to coerce a consistent 

cognitive state can easily be explained. In some cases, a 3-back requires the full en-

listment of task-positive attention and the subject is both cognitively able and moti-

vated to grant it. In other cases, because the task is too easy, too hard, or the subject is 

generally distracted, the subject is unable to enter a task-positive network. Similarly 

for the low workload induction: sometimes these trials are met with relative tranquili-

ty and other times a busily exploring default mode network.  

 

Between participants, fMRI studies have shown that extroverts have a greater change 

in the fMRI signal in the dlPFC between three-backs and rest compared to introverts 

even though, behaviorally, they perform the same [7]. One explanation for this dis-

crepancy is that introverts, being consistent self-monitors and relatively less capable 

to surrender attention to the external environment, fail to dislodge mild concurrent 

self-monitoring scripts as they complete n-backs. So while the cognitive processes in 

charge of their working memory remain their same, perhaps they fail to fully enter the 

task-positive network like the extroverts. 

 

Task-related attention and cognitive workload overlap, but knowing them invites a 

different set of design considerations. The basic goal of any user interface is to facili-

tate task performance. Good user interfaces therefore mitigate distractibility and nar-

row their user’s attention. Knowing the direction of the user’s attention, internal or 

external, provides the basic measure governing the current effectiveness of a user 

interface: a broader and more useful piece of information than knowing the weight of 

their cognitive workload.  

7 Conclusion 

We suggest a return to simplicity in the design fNIRS-based cognitive state predic-

tors. First, we recommend steering away from machine learning until the meaning of 

the data can be understood on a single trial basis. Second, we recommend adaptive 

filtering so that channels with exclusive brain activity can be examined. Third, we 

recommend perfecting an algorithm on only one or a handful of trained and disci-

plined subjects, before deciding how to train, calibrate, and deploy it on a random 

audience. Finally, we encourage future BCI studies, like contemporary neuroscience, 

begin to consider the relevance and usefulness of calibrating algorithms mind-

wandering resting states. 
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